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SUMMARY

Methods for the computation of �ow problems based on .nite-volume discretizations and pressure-
correction methods frequently require the interpolation of control volume face values from nodal values.
The simple, often employed central di=erencing scheme (CDS) leads to a signi.cant loss in accuracy
when the numerical grid is non-regular as it is usual when modelling complex geometries. An alternative
technique based on a multi-dimensional Taylor series expansion (TSE) is proposed, which preserves
the CDS-like sparsity pattern of the discrete system. While the TSE scheme computationally is only
slightly more expensive than the CDS approach, it results in a signi.cantly higher accuracy, where the
di=erence increases with the grid irregularity. The method is investigated and compared to the CDS
approach for some representative test cases. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A very popular class of methods for the numerical solution of �ow problems in complex
geometries consists of the use of a .nite-volume discretization on colocated boundary-.tted
grids together with a pressure-correction scheme for the solution of the discrete system. In
course of such an approach values of unknowns have to be evaluated repeatedly at the faces
of the control volumes (CV) from the values of the nodal points at the CV centres. For
this a proper interpolation scheme has to be applied in order to achieve a desired numerical
accuracy of the overall discretization scheme.

A standard choice for this interpolation, which is implemented in many commercial and
academic CFD packages, is the linear central di=erencing scheme (CDS) involving the val-
ues of two adjacent points to calculate the cell face values (see e.g. Ferziger and PeriEc [1]).
In the one-dimensional case the asymptotic accuracy of this scheme is of second order. In
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two or three dimensions the second-order accuracy is only preserved, if the three points in-
volved in the interpolation are connected by a straight line, i.e. if the con.guration is quasi
one-dimensional. In case of complex grids, which are required for modelling complex geome-
tries, this is usually not ful.lled. The accuracy of the scheme deteriorates in areas, where the
grid possesses such irregularities.

PeriEc [2] investigated this e=ect for the computation of the convective �uxes for an inviscid
stagnation �ow. He found unphysical kinks in the pressure distribution when using the linear
CDS interpolation together with a distorted grid and proposed grid re.nement or grid smooth-
ing to reduce the error. However, since in complex geometries often it is not possible to have
a ‘nice’ grid all over the �ow domain, it is much more desirable that the .nite-volume solver
somehow compensates for the shortcomings of the grid.

Recently, Moulinec and Wesseling [3] investigated several interpolation methods to im-
prove the approximation of derivatives at the cell faces on distorted grids in a .nite-element
context. For a bilinear interpolation scheme they found signi.cantly improved accuracy and
convergence behaviour compared to linear schemes. Barth and Jespersen [4] and Weiss et al.
[5] propose di=erent interpolations based on Taylor series expansions.

In the present study an interpolation scheme based on a multi-dimensional Taylor series
expansion is proposed and investigated. It is designed, on the one hand, to preserve second-
order accuracy also on strongly distorted grids without any restriction and, on the other
hand, simultaneously, requiring minimum additional e=ort compared to the CDS approach.
The scheme is tested for several representative test cases with varying grid quality and its
numerical accuracy is compared to that obtained with the standard CDS.

2. GOVERNING EQUATIONS AND DISCRETIZATION

With no loss of generality we can restrict ourselves to the two-dimensional case, since a
generalization of all considered aspects to three dimensions is straightforward. We consider
a laminar steady �ow of an incompressible Newtonian �uid in an arbitrary domain described
by the well-known Navier–Stokes equations:
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where ui are the velocity vector components with respect to the Cartesian coordinates xi; p
is the pressure, 	 is the kinematic viscosity and 
 is the density (for simplicity, 	 and 
 are
assumed to be constant).

In order to discretize the conservation Equations (1) and (2) a .nite-volume method for
general non-orthogonal grids is employed, which is described in detail in PeriEc [2], DemirdSziEc
and PeriEc [6], Durst and Sch5afer [7]. Here we recall some basics which will be necessary for
the following considerations.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:625–645
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Figure 1. Arbitrary quadrilateral control volume (neighbouring points are labelled
according to the compass notation).

Integrating Equations (1) and (2) over an arbitrary quadrilateral control volume (see
Figure 1) and applying the Gaussian theorem gives:
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where the summation is performed over the four faces of the control volume (c= e; w; n; s).
The volume integral over the pressure term Sp is approximated by the two-dimensional mid-
point rule yielding

Sp ≈ 1
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P
�V (5)

where �V is the volume of the corresponding CV. The mass �uxes ṁc, the convective
�uxes FCc and the di=usive �uxes FDc are approximated for each face separately by the
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one-dimensional midpoint rule, which, e.g. for the eastern face, yields

ṁe ≈ (ui)eni�Se (6)

FCe ≈ ṁe(ui)e (7)

FDe ≈ 	
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e

)
nj�Se (8)

where �Se denotes the length of the eastern face. Here and in the following, the overbar
denotes an appropriate interpolation of the cell face value by the nodal values. The method
used for this interpolation is the major concern of the present paper and will be discussed in
detail in the next section.

For convenience in the following we use the notations u = u1; v = u2 and x = x1,
y = x2 and examine the discretization of the u-momentum equation noting that corresponding
techniques can be applied in a similar way to the v-momentum equation.

To evaluate the pressure term (Equation (5)) the derivative can be expressed in terms of
grid related coordinates �1 and �1 at point P (see Figure 1). Applying the chain rule one gets(
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is the Jacobian of the coordinate transformation (x; y) ↔ (�1; �1). The derivatives of p at node
P in the directions �1 and �1 and the metric terms can be approximated by central di=erences
involving the values at locations e; w; n and s resulting in the approximation(
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P
≈ ((p)e − (p)w)(yn − ys)− ((p)n − (p)s)(ye − yw)

(xe − xw)(yn − ys)− (xn − xs)(ye − yw) (11)

Note that the denominator of the right hand side of Equation (11) is equal to the volume �V
of the corresponding CV, such that the resulting approximation of the pressure term Sp reads

Sp ≈ 1


[((p)e − (p)w)(yn − ys)− ((p)n − (p)s)(ye − yw)] (12)

For the further approximation of the di=usive �uxes FDc one can express the derivatives in
Equation (8) in terms of the grid related coordinates �2 and �2 (see Figure 1) yielding, e.g.
for the derivative of u in x-direction at the east face, the expression(
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where J2 is the Jacobian of the coordinate transformation (x; y) ↔ (�2; �2). The derivatives
of u at point e can be approximated by central di=erences involving points E and P for the
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�2-direction and points ne and se for the �2-direction yielding together with a central di=erence
approximation of the metric quantities:(
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e
≈ 1

V
[(uE − uP)(yne − yse)− (une − use)(yE − yP)] (14)

with

V= (yne − yse)(xE − xP)− (xne − xse)(yE − yP) (15)

Evaluating (@u=@y)e and (@v=@x)e in the same manner the approximation of the di=usive �ux
through the east CV face becomes:

FDe ≈− 	
V
((uE − uP)[2(yne − yse)2 + (xne − xse)2]

− ((u)ne − (u)se)[2(yE − yP)(yne − yse) + (xE − xP)(xne − xse)]
− [(vE − vP)(yne − yse)− ((v)ne − (v)se)(yE − yP)](xne − xse)) (16)

Eventually, one can obtain discrete momentum equations of the form:

auPuP +
∑
C
auCuC = bu; avPvP +

∑
C
avCvC = bv (17)

where C=E;W;N; S denotes the midpoint of the neighbouring CV. auP; a
u
C; a

v
P; a

v
C represent

the corresponding coeWcients and bu; bv the source terms of the discrete u- and v-momentum
equations, respectively.

To solve the coupled system of discrete equations an iterative pressure-correction technique
is employed in which again interpolations to the CV faces are necessary. Thus, we also
brie�y outline the corresponding parts of a variant of the well-known SIMPLE algorithm
of Patankar and Spalding [8] as a typical representative of such a method. An extensive
description of the applied procedure can also be found in Ferziger and PeriEc [1]. In a .rst step
provisional velocity components u∗ and v∗ are computed by evaluating the discrete momentum
Equation (17) with an estimated pressure .eld p∗. Calculating the mass �uxes ṁ∗

c with these
velocities the continuity equation is not ful.lled but leaving a mass source bm for each CV:

bm(u∗c ; v
∗
c )=

∑
c
ṁ∗
c (u

∗
c ; v

∗
c ) (18)

In a next step corrections u′, v′ and p′ to u∗, v∗ and p∗, respectively, are sought such that
the corrected values exactly ful.l the discrete continuity equation. Subtracting Equation (18)
from Equation (3) yields an equation for the mass �ux correction which is a function of the
velocity corrections: ∑

c
ṁ′
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∗
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∗
c ) (19)

In the spirit of the SIMPLE algorithm from the momentum equations the following expressions
for the velocity corrections can be derived:
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To determine the correction at the CV faces without introducing oscillations due to the colo-
cated CV arrangement the selective interpolation technique of Rhie and Chow [9] is employed,
which, e.g. for the u-velocity at the east CV face, reads:

u′e=−
(
yn − ys

auP

)
e
(p′
E − p′

P) (21)

Similar formulae result for the other CV faces and for v′. Substituting these expressions into
Equation (19) yields the equation for the pressure correction p′.

The velocities u∗c and v∗c at the CV faces for assembling the mass source bm are computed
by rewriting the discretized momentum equations for every computational node, e.g. for the
velocity component u:
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(22)

For computing convenience the right-hand side is transformed by using Equation (22) itself
yielding the trivial relation:

u∗P= u
∗
P +

1
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1

auP

((p)e − (p)w)(yn − ys) (23)

Since the velocities are needed on the faces of the CV the right-hand side of Equation (23)
has to be interpolated with treating the pressure terms di=erently. Thus, the pressure weighted
interpolation is obtained (for details see also Miller and Schmidt [10]). For instance, for u∗e
the corresponding formula reads:

u∗e =(u∗)e +

(
((p)e − (p)w)(yn − ys)


auP

)
−
(
yn − ys
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)
e
(pE − pP) (24)

Finally, we can introduce Equations (21) and (24) into Equation (19) to get an equation for
the pressure correction p′:

apPp
′
P +

∑
C
apCp

′
C = bm(u∗; v∗) (25)

After solving Equation (25) one can use p′ to correct the pressure p∗ and the velocities u∗

and v∗ (exploiting Equation (20)). Since now the updated velocity and pressure .elds ful.l
the continuity equation but not the momentum equations any more the procedure has to be
repeated until both the momentum and the continuity restriction are ful.lled within a given
tolerance.

3. INTERPOLATION SCHEMES

To complete the discretization, for all values noted with an overbar in the deduced equations
of the previous section, i.e. in Equations (6), (7), (12), (16), (21) and (24), an interpolation
from values at the nodal points in the CV centres (subscripted with uppercase letters) has
to be applied. To retain an overall order of two (all other approximations employed are
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second-order accurate) the applied interpolation is desired to be also of second order. For this
purpose two principle methods will be considered here: the standard CDS interpolation and
an approach based on a multi-dimensional Taylor series expansion. The description of the
methods is provided exemplarily for the points e and ne.

3.1. Central di-erencing scheme

The frequently used CDS is based on the Taylor series expansion

"e= #P"P + #E"E + $x

(
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e
+ HOT︸ ︷︷ ︸

truncation error

(26)

by skipping the terms indicated as truncation error. In Equation (26) HOT denotes higher
order terms and the interpolation factors #P, #E and the coeWcients $x, $y are de.ned by

#P =

√
(xE − xe)2 + (yE − ye)2√
(xE − xP)2 + (yE − yP)2

(27)

#E =

√
(xP − xe)2 + (yP − ye)2√
(xE − xP)2 + (yE − yP)2

∼=1− #P (28)

$x = (xP − xe)#P + (xE − xe)#E (29)

$y = (yP − ye)#P + (yE − ye)#E (30)

Formally, the CDS approximation only is of .rst-order accuracy. Second order is achieved if
both $x and $y vanish, which is equivalent to the geometrical constraints (see Figure 2):

xP − xe√
(xP − xe)2 + (yP − ye)2︸ ︷︷ ︸

− cos %1

+
xE − xe√

(xE − xe)2 + (yE − ye)2︸ ︷︷ ︸
cos %2

= 0 (31)

yP − ye√
(xP − xe)2 + (yP − ye)2︸ ︷︷ ︸

− sin %1

+
yE − ye√

(xE − xe)2 + (yE − ye)2︸ ︷︷ ︸
sin %2

= 0 (32)

Hence, the CDS interpolation is of second order, only if %1 = %2. For grids covering complex
geometries this condition usually cannot be ful.lled throughout the whole problem domain
resulting in a loss of accuracy depending on the severeness of the grid distortion. Note that
in case of %1 = %2 the interpolation factor #E is equal to 1− #P as indicated in Equation (28).
Otherwise the relation holds only approximately but is still used to keep the interpolation
consistent accepting a certain error.

Concerning the interpolation in the corner points of the CV, e.g. point ne, there is no reason
to expect this point in a speci.c position relative to the computational nodes P, E, etc. Thus,
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Figure 2. Geometrical interpretation of the accuracy of CDS in two dimensions.

one cannot employ the simple CDS as described above. A simple and often employed way
of performing this interpolation is to apply CDS .rst between E and P and between NE
and N . Then, the obtained two values can be interpolated again using CDS with a suitable
interpolation factor (e.g. the one corresponding to points P and N ). Again, this leads to a
deterioration of the accuracy on distorted grids, while on orthogonal grids second order is
achieved.

3.2. Interpolation using Taylor series expansions

One straightforward possibility to preserve second-order accuracy as well on distorted grids
would be to apply a bilinear interpolation in all cases by taking the exact position of points
e and ne into account. However, this approach has two drawbacks. First, it is ambiguous
which four nodal points should be taken as the bases for the interpolation, since, for instance,
the point e may be located either in the quadrilateral formed by E; P; N; NE or E; P; S; SE
(see Figure 3). Second, the bilinear scheme produces relatively large computational molecules
leading to an increased number of matrix entries or, if the additional entries are treated
explicitly (see e.g. Ferziger and PeriEc [1]), to an increased number of iterations for solving
the corresponding algebraic equation system. Therefore, one can consider alternative methods
basing directly on a Taylor series expansions.

3.2.1. Review: Existing methods. A Taylor series expansion about point P for e in two
dimensions reads:

"a="P + (xe − xP)
(
@"
@x

)
P
+ (ye − yP)

(
@"
@y

)
P
+ HOT (33)

where a denotes a point in the vicinity of P, e.g. e, ne. This approach has been suggested
by di=erent authors, e.g. Barth and Jespersen [4], Ferziger and PeriEc [1] and Weiss et al. [5].
They all proceed by evaluating the gradient at point P by the auxiliary expressions:[

@"
@x

]
P
≈ 1
�X

∮
"nx ds;

[
@"
@y

]
P
≈ 1
�X

∮
"ny ds (34)
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Figure 3. Relative location of CV face values to nodal points.

where �X is the area enclosed by the integration path and nx; ny are the components of the
corresponding surface vector. The approaches of the authors di=er in the approximation of the
integral. Ferziger and PeriEc use Equation (33) to interpolate a value of " to an arbitrary point
within the CV around P. They assume that " can be represented properly on the surface of
the CV and use the approximation:∮

"nx ds≈∑
c
"c�S xc (35)

Thus, one is again left with the problem to approximate "c.
Weiss et al. [5] use the same integral approximation (Equation (35)) employing Equa-

tion (33) as an interpolation formula for "c. To overcome the problem that "c is needed to
interpolate "c they use the simple approximation:

"c≈ 1
2
("C + "P) (36)

It is obvious that this approximation leads to a loss in accuracy on distorted grids. Neverthe-
less, we consider this interpolation for a comparison. It is used in the form:

"e= #P"P + #E"E + #W"W + #N"N + #S"S (37)

We omit the exact de.nition of the interpolation factors #C and just note that the relation
between the factors is

#P=1− (#E + #W + #N + #S) (38)

Barth and Jespersen [4] propose to integrate for the approximations (Equation (34)) over all
nodes whose CV share a common corner point with the CV around P. Hence, in our case
the integration path would follow the eight computational points E; SE; S; SW;W;NW;N; NE.
On the one hand the approximation of the integral can be performed very accurately since no
interpolation is needed. On the other hand it is very expensive either to perform this integration
whenever an interpolation is needed or to store the eight corresponding interpolation factors.
Additionally, the number of matrix entries would be increased. Therefore, we do not consider
this method here.
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3.2.2. New approach (TSE). Since all above interpolation methods have their drawbacks, it
is our objective to design a rule which is cheap to apply and as accurate as possible. The
starting point is a Taylor series expansion around point e for an arbitrary point A in the
vicinity of e.

"A="e + (xC − xe)
(
@"
@x

)
e
+ (yC − ye)

(
@"
@y

)
e
+ HOT (39)

Neglecting the higher order terms, Equation (39) contains three unknowns, namely the value
"e and the two derivatives (@"=@x)e and (@"=@y)e:

Evaluating Equation (39) for at least three known points, e.g. P, E and N , one can eliminate
the two derivatives leading to a formula for "e; which may be unsolvable due to geometrical
constraints. Therefore, a better choice is to solve for the derivatives in a .rst step. For
symmetry reasons we choose the Taylor series expansions for the points P; E; N and S; with
which the derivatives can be approximated by

(
@"
@x

)
e
≈ 1

Y
[("E − "P)(yN − yS)− ("N − "S)(yE − yP)] (40)

(
@"
@y

)
e
≈ 1

Y
[("N − "S)(xE − xP)− ("E − "P)(xN − xS)] (41)

with

Y=(xE − xP)(yN − yS)− (xN − xS)(yE − yP) (42)

Note that Y describes the area spanned by the vectors pointing from E to P and from N to S.
Since these two vectors never coincide on structured grids, Y always is di=erent from zero.
Substituting Equations (40) and (41) into the Taylor series expansion for point P gives:

"e ≈"P − xP − xeY
[("E − "P)(yN − yS)− ("N − "S)(yE − yP)]

− yP − ye
Y

[("N − "S)(xE − xP)− ("E − "P)(xN − xS)] (43)

The approximation provided by Equation (43) is second-order accurate, independent of the
grid. Similar to the expression for CDS it can be rewritten in the form

"e≈ #P"P + #E"E + #N"N + #S"S (44)

with

#P =1 +
1
Y

[(xP − xe)(yN − yS)− (yP − ye)(xN − xS)] (45)

#E =
1
Y

[−(xP − xe)(yN − yS) + (yP − ye)(xN − xS)] (46)
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#N =
1
Y

[(xP − xe)(yE − yP)− (yP − ye)(xE − xP)] (47)

#S =
1
Y

[−(xP − xe)(yE − yP) + (yP − ye)(xE − xP)] (48)

Observe that #E =1− #P and #S =−#N .
For the interpolation of the corner value "ne a formula similar to Equation (44) can be

derived, where again the values at the points P; E; N and S serve as the basis for the
interpolation. In this case the corresponding interpolation factors read:

#P =1 +
1
Y

[(xP − xne)(yN − yS)− (yP − yne)(xN − xS)] (49)

#E =
1
Y

[−(xP − xne)(yN − yS) + (yP − yne)(xN − xS)] (50)

#N =
1
Y

[(xP − xne)(yE − yP)− (yP − yne)(xE − xP)] (51)

#S =
1
Y

[−(xP − xne)(yE − yP) + (yP − yne)(xE − xP)] (52)

Again the factors follow the correlations #E =1− #P and #S =−#N .

4. NUMERICAL RESULTS

To investigate the accuracy of the TSE scheme and compare it to the other schemes indicated
in the previous section, two test cases (Sections 4.1 and 4.2), for which analytical solutions
are known, as well as a more practical example (Section 4.3) are considered.

To quantify the accuracy of the schemes an error is evaluated by the volume weighted
summation of the mean errors at all computational points:

E"=
1
�V
∑
CV
�V
"analytical − "numerical

"analytical
(53)

where �V is the volume of the corresponding CV and �V is the volume of the whole problem
domain. Orders of convergence are either evaluated from

p= log

(
E2h
"

Eh"

)/
log 2 (54)

or

p= log
(
)4h − )2h

)2h − )h
)/

log 2 (55)

where ) denotes a characteristic value and the superscripts 4h; 2h; h indicate successively
re.ned grids.
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Details of the overall numerical solution procedure employed are given in the paper by
Durst and Sch5afer [7]. In particular, to enhance the diagonal dominance of the system matri-
ces the convective �uxes are implemented via a deferred correction approach [11], where the
second-order parts of the �ux approximations are treated explicitly and only the .rst-order
upwind parts are treated implicitly. The employment of a �ux-blending coeWcient (FBC)
o=ers the opportunity to select either the .rst-order method (FBC=0), the second-order
method (FBC=1) or a blending of both (0¡FBC¡1). Note that a value for FBC di=er-
ent from 1 is only considered for the example in Section 4.3.

4.1. Stagnation 3ow

As a .rst test case we consider the stagnation �ow in a unit square [0; 1]2 also discussed by
PeriEc [2]. The analytical solution of the problem is given by

u(x)= x; v(y)=−y; p(x; y)=p0 − 
2 (u2 + v2) (56)

where p0 is the pressure at the stagnation point (x; y)= (0; 0). Figure 4 illustrates the dis-
tribution of the isobars and the streamlines for the �ow. The isobars correspond to circles
around the stagnation point. We solve the problem numerically on the three types of grids
shown in Figure 5 (see also PeriEc [2]). The .rst represents a uniform Cartesian grid, which
is the obvious choice for a quadratic domain. The second grid includes sharp changes of grid
line directions representing a typical class of grid distortions, which can usually be found
in any structured grid for complex geometries. The third grid is randomly distorted in both
coordinate directions. While the uniform Cartesian grid satis.es the conditions for the CDS
interpolation to be of second-order accuracy, the distorted grids do not.

Applying CDS on the systematically distorted grid with di=erent spatial resolutions (with
10× 10; 20× 20 and 40× 40 CVs) one obtains the pressure distributions given in Figure 6.
It is obvious that in the vicinity of the kinks in the grid lines the isobars are strongly de-
teriorated. With grid re.nement the error zone becomes narrower, but the general behaviour
does not improve. Using the interpolation of Weiss et al. [5], as expected from theory, the
situation does not improve signi.cantly (see Figure 7). Figure 8 shows the isobars obtained

Figure 4. Analytical distribution of isobars and streamlines for the stagnation �ow.
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Figure 5. Uniform Cartesian grid (I), systematically distorted grid (II) and randomly distorted grid
(III) for the stagnation �ow problem.

Figure 6. Isobars for the stagnation �ow problem on three successively re.ned grids
(distorted grid II) calculated with CDS.

Figure 7. Isobars for the stagnation �ow problem on three successively re.ned grids (distorted grid II)
calculated with the interpolation of Weiss et al. [5].

on the systematically distorted grids (with the same resolutions as above) when using the
TSE interpolation. One can see that the grid geometry does not noticeably a=ect the accuracy
of the solution.

To quantify the accuracy of all three interpolation schemes in Tables I and II the mean
relative errors for the velocities and the pressure for the grid setups I and II with di=erent
resolutions are summarized. The error on the Cartesian grid using CDS interpolation is already
small on the coarsest grid and is reduced remarkably with every re.nement. Employment of
CDS on the distorted grid leads to severe losses in accuracy. In particular, the error for the
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Figure 8. Isobars for the stagnation �ow problem on three successively re.ned grids
(distorted grid II) calculated with TSE.

Table I. Relative error of u-velocity Eu obtained with all three interpolations on grids I and II
(in per cent) and order of convergence for the stagnation �ow problem.

CDS Weiss TSE
Grid II Grid II

CV Grid I Grid II

10× 10 2:0× 10−4 1:9× 10−2 9:8× 10−3 4:6× 10−4

20× 20 2:5× 10−5 6:3× 10−3 3:4× 10−3 5:4× 10−5

40× 40 3:1× 10−6 2:1× 10−3 1:1× 10−3 6:6× 10−6

80× 80 4:0× 10−7 6:5× 10−4 3:7× 10−4 8:6× 10−7

160× 160 6:4× 10−8 2:1× 10−4 1:27× 10−4 1:2× 10−7

Order 2.6 1.6 1.6 2.8

Table II. Relative error of the pressure E
 obtained with all three interpolations on grids I and II
(in per cent) and order of convergence for the stagnation �ow problem.

CDS Weiss TSE
Grid II Grid II

CV Grid I Grid II

10× 10 1:1× 10−1 1:1× 100 9:7× 10−1 6:5× 10−2

20× 20 3:0× 10−2 9:9× 10−1 9:4× 10−1 2:9× 10−2

40× 40 8:1× 10−3 9:4× 10−1 9:3× 10−1 6:2× 10−3

80× 80 2:2× 10−3 9:1× 10−1 9:2× 10−1 1:7× 10−3

160× 160 6:0× 10−4 9:0× 10−1 9:2× 10−1 4:9× 10−4

Order 1.9 0.0 0.0 1.8

pressure with about 90 per cent is very high. The velocities are not predicted that badly,
although the error is several orders of magnitude higher than in the Cartesian case. The same
statement holds for the interpolation of Weiss et al. [5] although the error is reduced slightly.
The situation changes when using the TSE interpolation. The mean errors for both grid types
are of the same magnitude. In Tables I and II also the rates of convergence for the velocity
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Figure 9. Isobars for the stagnation �ow problem on a randomly distorted grid
calculated with CDS and TSE.

and pressure is given. Due to the linear distribution of the velocities the leading error term
in the momentum equations is of third order. Therefore, we expect an order of three for the
velocity although the employed scheme only has an overall order of two. In the Cartesian
case we nearly obtain the estimated orders of convergence for velocity and pressure. With the
distorted grid one observes a severe loss in the order of convergence, in particular, for the
pressure, for which the order is close to zero. As expected, the application of TSE preserves
the order on the distorted grid.

Finally, we present the results of the stagnation �ow problem on the randomly distorted
grid III with CDS and TSE. We omit the interpolation of Weiss et al. [5] here and in
the following since, as shown before, it does not improve the situation on distorted grids
signi.cantly compared to CDS. Figure 9 presents the isobars on a grid with 40× 40 CVs. As
expected the TSE yields a perfect result while CDS su=er from its de.ciencies.

4.2. Channel 3ow

To study the accuracy of the interpolation practices for systematically varying grid quality the
laminar Poisseuille �ow in a plane channel is considered. The analytical solution reads

u(y)=4 · umax

(
1− y

h

)y
h
; v=0; p(x)=p0 − 8	


umax

h2
x (57)

where h is the channel height, umax is the maximum velocity and p0 is an arbitrary constant.
The problem parameters are chosen to yield a Reynolds number of Re=200 based on the
channel height.

Again, of course, the natural choice for this problem is a Cartesian grid. To investi-
gate the error due to grid de.ciencies three systematically distorted grids are employed (see
Figure 10). The grid distortion is characterized by the maximum angle % between the grid lines
and the channel walls, for which the values %=14◦; 26◦; 36:5◦ are considered. The Cartesian
grid corresponds to %=0◦. In Figures 11 and 12 the pressure distribution and the velocity
distribution along the channel at y=0:7438h using both interpolation practices CDS and TSE
are presented. The section shown in the direction along the channel corresponds to the .rst
grid line deviation from the horizontal. Using the CDS interpolation the pressure as well as
the velocity deviates more and more from the analytical solution with increasing grid distor-
tion. Even small distortions as for %=14◦ cause remarkable shortcomings in the numerical
solution. Compared to that the pressure distribution on the distorted grids calculated with the
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Figure 10. Systematically distorted grids for the channel �ow.

Figure 11. Pressure and velocity distribution for the channel �ow computed on a
grid with 160× 80 CV with CDS.

Figure 12. Pressure and velocity distribution for the channel �ow computed on a
grid with 160× 80 CV with TSE.

TSE interpolation .ts very well the analytical solution. The velocity distribution still includes
observable errors due to the grid distortion but compared to the CDS case they are reduced
by a factor of .ve.
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Table III. Relative errors of velocity obtained with both interpolations (in per cent) on systematically
distorted grids and orders of convergence for the channel �ow problem.

%=14◦ %=26◦ %=36:5◦

CV CDS TSE CDS TSE CDS TSE

40× 20 7:8× 10−2 5:7× 10−2 1:5× 10−1 7:8× 10−2 2:5× 10−1 1:1× 10−1

80× 40 2:1× 10−2 1:5× 10−2 4:5× 10−2 2:0× 10−2 7:4× 10−2 2:7× 10−2

160× 80 6:2× 10−3 3:7× 10−3 1:6× 10−2 5:0× 10−3 2:7× 10−2 6:9× 10−3

Order 1.8 2.0 1.5 2.0 1.4 2.0

Figure 13. Problem con.guration for turbulent �ow around a car (lengths indicated in millimeters).

In Table III the global errors for u on the distorted grids using CDS and TSE are sum-
marized for di=erent grid sizes together with the corresponding orders of convergence. Using
CDS the order deviates more and more from two with increasing grid distortion, while the
employment of TSE ensures that the second order is preserved independent of the grid. Al-
though also with TSE the absolute values of the global error depend on the angle of distortion,
in all cases the values are smaller as with CDS, where due to the reduced order of CDS the
di=erence also increases with the grid size. On the grid with %=36:5◦ with TSE one gets the
same global accuracy with 40× 80 CV as with CDS with 160× 80 control volumes.

4.3. Flow around a car model

As a more practical test case for the comparison of both interpolation schemes we consider the
turbulent �ow around a two-dimensional car model, which was already investigated numeri-
cally and experimentally by Angelis [12]. The problem geometry is illustrated in Figure 13.
At the inlet a measured turbulent mean velocity pro.le with maximum (averaged) velocity
umax =15m s−1 is chosen (see Angelis [12]). The other boundary conditions are: a symmetry
condition at the top, a zero gradient condition at the outlet and a no-slip condition at the
bottom and around the car. The �uid parameters are that of air giving a Reynolds number
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Figure 14. Streamlines for turbulent �ow around a car.

Figure 15. Section of numerical grid for turbulent �ow around a car.

of Re=338 000 based on the length l=0:297 m of the car. The turbulence is accounted for
by employing the standard -–. model with wall functions (see Launder and Spalding [13]).
The inlet values for - and . are set according to -=0:01u2 and .=-3=2=l. The �ow pat-
tern is indicated in Figure 14 showing the streamlines in the area around the car. In the
discretization of the transport equations for - and . the same techniques as described for the
momentum equations are applied, in particular, for the necessary interpolations of values of
- and . to the CV faces either CDS or TSE is employed. Computations are performed for
three successively re.ned grids with 2774 CVs, 11 096 CVs and 44 384 CVs. In Figure 15
the coarsest numerical grid in the critical region around the car is shown. Note that the grid
can be considered to be of rather good quality without much distortion with respect to or-
thogonality. To see in particular the in�uence of the considered interpolation practices with
respect to the approximation of the convective �uxes in a convection dominated �ow two
�ux-blending coeWcients are considered: FBC=0:0 representing a .rst-order upwind approx-
imation, i.e. neither TSE nor CDS will be employed in the discretization of the convective
�uxes, and FBC=0:9 resulting in a discretization close to second-order using either TSE or
CDS (for higher FBC values convergence problems arise). Figure 16 shows the distributions
of the pressure in the rear of the car computed on the .nest grid employing TSE and CDS
with FBC=0:9. Although the grid quality is good, locally the pressure is disturbed apparently
when employing CDS. Globally, the pressure distributions do not seem to di=er too much.
However, the drag coeWcient, which plays an important role in automotive engineering, can
be in�uenced remarkably even by minor changes in the pressure .eld. To see this Table IV
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Figure 16. Isobars at the rear of the car obtained with TSE (left) and CDS (right) and 0.9
for the �ux-blending coeWcient.

Table IV. Drag coeWcients, grid-independent solutions (GIS) and orders of convergence
with TSE and CDS for two di=erent �ux-blending coeWcients FBC.

FBC=0:0 FBC=0:9

CV TSE CDS TSE CDS

2774 0.5944 0.6212 0.4773 0.4868
11096 0.4920 0.5149 0.4148 0.4280
44384 0.4480 0.4642 0.3972 0.4093

GIS 0.4148 0.4179 0.3903 0.4006

Order 1.2186 1.0681 1.8283 1.6528

presents the values for the drag coeWcient computed from the results with both interpolation
practices and the two di=erent �ux-blending coeWcients. Additionally, for every set of para-
meters the order of convergence and the corresponding extrapolated grid-independent solution
is given. The resulting numerical errors for the di=erent grids based on a comparison with the
respective grid-independent solution are given in Figure 17. For FBC=0:0 the order is close
to one for both interpolation schemes. While the grid-independent solution is nearly the same,
the computed values on the successively re.ned grid levels di=er due to the slightly higher
value for the order of convergence when using TSE. Employing FBC=0:9 with TSE yields
an order of convergence of nearly 2, while CDS again su=ers from the grid de.ciencies. In
summary, also for this test case the advantage in accuracy of TSE over CDS is clear.

Finally, to compare the computational costs with TSE and CDS the CPU time for one
pressure correction cycle is measured where three linear system relaxations of the momentum
equations and the equations for - and . and relaxations on the pressure correction equation
are performed. The results are summarized in Table V. As the storage cost, the computational
cost for one cycle increases only by about 10 per cent on every grid level.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:625–645



644 T. LEHNH 5AUSER AND M. SCH 5AFER

Figure 17. Numerical error in the drag coeWcient obtained with TSE and CDS for
two di=erent �ux-blending coeWcients.

Table V. CPU time spend for one pressure correction cycle and until convergence
using CDS and TSE in seconds on a SUN ULTRA=1 workstation.

CV CDS TSE Factor

2774 2:0130× 10−1 2:1742× 10−1 1.08
11096 7:3840× 10−1 8:0643× 10−1 1.09
44384 2:9191× 100 3:1939× 100 1.09

5. CONCLUSIONS

Since the CDS interpolation is only .rst-order accurate on distorted grids, the overall accuracy
of an otherwise second-order scheme employing this kind of CV face interpolation is reduced
signi.cantly when the grid has irregularities. Even more severe than the global loss in the
order of convergence is the local error in the vicinity of a grid distortion. In particular, the
pressure distribution, which in many engineering applications is a most important quantity
(e.g. for lift and drag computations), is very sensitive to this e=ect.

It was shown that an overall second-order accurate scheme, independent of any grid distor-
tion, can be achieved by using the considered TSE interpolation. Since the scheme preserves
the sparsity pattern of the computational molecule, it is only slightly more expensive with
respect to computational e=ort as compared to the CDS scheme. Also the local errors near grid
distortions become much smaller with this scheme. Thus, with the TSE interpolation a simple
and eWcient method for interpolations to CV faces is provided, which ensures second-order
accurate numerical solutions also when the numerical grid has de.ciencies, which usually are
unavoidable when dealing with complex geometries.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:625–645



IMPROVED LINEAR INTERPOLATION FOR FINITE-VOLUME SCHEMES 645

ACKNOWLEDGEMENTS

The .nancial support of the work by the Volkswagen-Stiftung is gratefully acknowledged.

REFERENCES

1. Ferziger J, PeriEc M. Computational Methods for Fluid Dynamics. Springer: Berlin, 1996.
2. PeriEc M. A Finite Volume Method for the Prediction of Three-Dimensional Fluid Flow in Complex Ducts.

PhD thesis, University of London, 1985.
3. Moulinec C, Wesseling P. Colocated schemes for the incompressible Navier–Stokes equations on non-smooth

grids for two-dimensional problems. International Journal for Numerical Methods in Fluids 2000; 32:349–364.
4. Barth TJ, Jespersen DC. The design and application of upwind schemes on unstructured meshes. AIAA Paper

89-0366, Jan 1989.
5. Weiss JM, Maruszewski JP, Smith WA. Implicit solution of preconditioned Navier–Stokes equations using

algebraic multigrid. AIAA Journal 1999; 37(1):29–36.
6. DemirdSziEc I, PeriEc M. Finite volume method for prediction of �uid �ow in arbitrary shaped domains with

moving boundaries. International Journal for Numerical Methods in Fluids 1990; 10:771–790.
7. Durst F, Sch5afer M. A parallel blockstructured multigrid method for the prediction of incompressible �ow.

International Journal for Numerical Methods in Fluids 1996; 22:549–565.
8. Patankar SV, Spalding DB. A calculation procedure for heat, mass and momentum transfer in three dimensional

parabolic �ows. International Journal for Heat and Mass Transfer 1972; 15:1787–1806.
9. Rhie CM, Chow WL. Numerical study of the turbulent �ow past an airfoil with trailing edge separation. AIAA

Journal 1983; 21:1525–1532.
10. Miller IF, Schmidt FW. Use of a pressure-weighted interpolation method for the solution of the incompressible

Navier–Stokes equations on a nonstaggered grid system. Numerical Heat Transfer 1983; 14:213–233.
11. Khosla PK, Rubin SG. A diagonally dominant second-order accurate implicit scheme. Computer Fluids 1974;

2:207–209.
12. Angelis W. Komplement5are Methodik in der Aerodynamik bodennaher Fahrzeuge. PhD thesis, Universit5at

Erlangen-Nuremberg, 1996.
13. Launder BE, Spalding DB. The numerical computation of turbulent �ows. Computational Methods in Applied

Mechanical Engineering 1974; 3:269–289.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 38:625–645


